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1 INTRODUCTION

The basic idea in program evaluation is to compare a sample set which was
exposed to the program and a sample set which was not, and evaluate if the set
exposed to the program is more strongly associated with the program’s intended
effect. As an equal alternative, we may compare a set which experienced a higher
exposure of the program with a set which experienced less, and assess if the high
exposure group is observed to experience the program’s intended effect more
strongly than the low exposure group.

For example, in a test evaluating the effectiveness of a drug to lower blood
pressure, we may compare a group which received the drug with a group which
received a placebo, and see if the treatment group see a significantly greater
reduction in blood pressure than the placebo group. Alternatively, we may give
one group a higher dose of the drug and the other a lower dose, and see if the high
dose group see significantly greater drop in blood pressure. For both frameworks,
the two groups are referred to as treatment and control groups, respectively.

Both approaches may be applied in evaluating the effectiveness of roadside
inspection and traffic enforcement in improving road safety. For example, wemay
compare carriers which received inspections versus carriers which do not in a
given time period, and see thereafter if the inspected carriers performmore safely
on the road. Similarly, we may compare carriers with a higher rate of inspections
with carriers that experienced a lower rate, and see if the high rate carriers, on
average, performmore safely on the road relative to the low rate carriers during
an evaluation period.

The former approach has been shown to be less practical, however, as the
inspection program is ubiquitous and most carriers will experience at least one
inspection per year, leaving very few eligible to serve as a control group. The issue
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becomes more prominent when comparing among large carriers, where a case of
one receiving zero inspection is extremely unlikely. The latter approach is more
feasible in assessing the effectiveness of roadside inspections and traffic enforce-
ment, as the variance in inspection rates among carriers allows partitioning of
the carriers analyzed such that both treatment and control groups have sufficient
samples.

This project is an implementation of the latter approach. It attempts to evaluate
the effectiveness of roadside inspections and traffic enforcement by comparing a
group of carriers with high inspection rates and a group with low inspection rates,
and see if the high rate carriers, on average, perform more safely on the road.
Specifically, we want to research available data to assess if the high inspection rate
carriers, on average, experience fewer crashes relative to the size of their fleets in
a period of evaluation after the inspections are performed.

1.1 A NOTE ON CAUSAL INFERENCE

Any discovery of association between high inspection rates with greater nega-
tive change in crash rates may serve as evidence of a causal relationship between
a treatment and an effect variable, and thereby, the effectiveness of roadside in-
spections and traffic enforcement. Evidence stands in contrast to proof, associated
in the scientific sense most closely with mathematical proof, which guarantees
a conclusion. Correlation does not prove causation, however it is the standard
byproduct of researches exploring possible causal relationships between variables.
For example, a research may show that smokers are more strongly associated
with developing lung cancer than non-smokers. The quantitative measure of the
strength of association between smoking and cancer does not prove that one
causes the other, but rather serves as correlational evidence indicating causality.

Naturally, some evidence are more compelling than others. Generally, the
greater the contrast in the observed effect between the treatment and control
groups, the stronger the evidence for a causal relationship. However, more impor-
tant than the final indication alone are the data and the analysis process which
underlies it. The strength of any correlational evidence hinges directly on the
data quality and methodologies used to arrive at that indication. The goal of the
roadside inspection and traffic enforcement model, therefore, is to implement
decisions on selecting data source and methodologies available such that any
result indicating the effectiveness of roadside inspections programmay be used
as evidence for program effectiveness.
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1.2 DATA CONSIDERATIONS

One way to obtain data is through a controlled study where measurements of
effect are taken before and after the application of a certain treatment or program.
For example, drug manufacturers often study the effectiveness of their product by
selecting participants, dividing them into control and treatment groups, applying
the medication, and measuring changes before and after the treatment while
minimizing the likelihood that any measured effect is due to factors other than
the treatment.

This rigorous approach is widely considered to be the gold standard in opti-
mizing data quality. Such controlled study, however, is expensive. In the case
of roadside inspections and traffic enforcement, implementing this approach
would require steps such as selecting drivers or carriers to include in the study,
standardizing the inspection process, and monitoring the change for a period
of time. While conceivable, the cost associated with controlling the sample and
collecting data in this manner is often prohibitive.

Another approach is the study of existing data. In this approach, we forego
additional data collection and define from available data variables which best
measure the treatment and effect of interest. We may additionally partition our
sample set to control for possible confounding factors, provided that our dataset
enables us to do so. We then obtain numeric indications of how strongly a particu-
lar treatment is associated with a certain effect. This analysis implements this data
approach, by using data available in the Motor Carrier Management Information
Systems (MCMIS) database.

1.3 METHODOLOGY CONSIDERATIONS

The decisions on how to process and interpret data impacts the value of a
research. Below are the primary considerations that drive the analysis decisions
made in this project.

Industry Standard. Implementing a commonly used methodology facilitates
ease of grasp and minimizes likelihood of misinterpretation of the methodology.
This analysis uses a statistical framework most commonly used for causal infer-
ence to foster ease of communication, and thus, confidence in the results of the
analysis.

Parsimony. Minimizing the number and complexity of analysis variables
facilitates ease of understanding of the relationship between those variables. For
example, the number of medicine tablets a person takes is a simpler variable to
measure and understand compared to the rate at which the person takes them.
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Objectivity and Transparency. Decisions made throughout the analysis pro-
cess impact the objectivity of the research. Steps such as using standard ways of
analyzing data, making the research data publicly accessible, maximizing code
readability, and facilitating peer review fosters objectivity, mitigates confirmation
bias, and ultimately improves the overall value of the research product.

2 IMPLEMENTATION

This analysis investigates if carriers inspected at a higher rate, on average,
experience relatively fewer crashes after the inspections. To enable quantitative
measurement, we define a carrier’s inspection rate as the number of inspections
divided by the number of the carrier’s power units, and crash rate the number of
crashes divided by the number of power units.

𝐼𝑛𝑠𝑝𝑒𝑐𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝐼𝑛𝑠𝑝𝑒𝑐𝑡𝑖𝑜𝑛𝑠 ÷ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑃𝑜𝑤𝑒𝑟𝑈𝑛𝑖𝑡𝑠 (𝑃𝑈𝑠)
𝐶𝑟𝑎𝑠ℎ 𝑅𝑎𝑡𝑒 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝐶𝑟𝑎𝑠ℎ𝑒𝑠 ÷ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑃𝑜𝑤𝑒𝑟𝑈𝑛𝑖𝑡𝑠 (𝑃𝑈𝑠)

The rates are computed on an annual basis. For example, a carrier with 100
power units who, in a given year, received 20 inspections and experienced 3
crashes will have an inspection rate of 0.20 and a crash rate of 0.03 for that year.

Figure 1: Carriers’ inspection and crash rates are computed on a yearly basis

To evaluate if inspections are effective at reducing crashes, we may intuitively
assess if higher inspection rates are associated with lower crash rates. We may,
for example, plot a graph to see if carriers who are inspected at a higher rate
in year 1, on average, experience lower crash rates in that same year. However,
in this approach the distribution of when the inspections and crashes occurred
could be such that a carrier’s crash rate cannot be reasonably attributed to the
inspections it received. For example, a carrier with a relatively low crash rate
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cannot reasonably attribute the rate to inspections if the inspections occur after
the crashes in the year. In other words, to logically attribute the effect to the
treatment, the inspections would have to occur before the crashes.

Figure 2: A hypothetical investigation of six carriers. In year 1, carriers with higher
inspection rate are shown to have lower crash rates. However, it is possible that
the inspections occur after the crashes in that year, in which case the lower crash
rates cannot be reasonably attributed to the higher inspection rates.

To address this we compare inspection rates not with crash rates but with the
change in crash rates. Specifically, we compare if higher inspections in year 1 is
negatively associated with change in crash rate from year 1 to year 2. An example
best illustrates this idea. Suppose we have two carriers with 100 power units each,
and that their inspection and crash rates are as described below.

Year 1 Year 1 Year 2

Carrier Inspections Crash Rate Crash Rate CR Change

1 20 0.03 0.02 - 0.01

2 5 0.03 0.04 + 0.01

In this example, carrier one, which received twenty inspections, saw a decline
in crash rates in year 2. Carrier two, who received only five inspections, saw
instead an increase in crash rate from year 1 to year 2. Note that as each has 100
PUs, their inspection rates are 20/100 and 5/100. From a sample of two carriers, we
observe that the carrier with higher rate of inspections experience relatively fewer
crashes in a period after the inspections. Figure 4 illustrates this relationship.
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Figure 3: Instead of comparing inspection rates against crash rates in year 1, we
compare year 1 inspection rate with the change in crash rate from year 1 to year 2.

Figure 4: Carrier one, which received more inspections, see relatively fewer
crashes in year 2. As indicated by the downward slope of the line of best fit,
greater inspection rate is negatively associated with change in crash rate. This
negative slope indicates effectiveness. However, because the sample size is small,
the difference could be solely due to chance.
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The more carriers we analyze, the greater the likelihood that any relation-
ship discovered between inspection rates and change in crash rate is not due to
randomness. Sample size drives the level of confidence of the results, thus in
this analysis we rely on the volume of data available in MCMIS to discover the
relationship between inspection rates and change in crash rates. We assess the
strength of evidence for the effectiveness of roadside inspections by asking two
questions:

• Are greater inspection rates negatively associatedwith change in crash rates?

• If true, is the relationship statistically significant?

2.1 PERIODS OF EVALUATION

To draw on data available in MCMIS we first define the time range by which
we aggregate inspection and crash rates. In this analysis we select our period of
aggregation to be a period of one year. To increase rigor, the analysis evaluates
two periods of interest and perform two separate inquiries into how inspection
rates are related to change in crash rates.

The two periodswere chosen arbitrarily. For the first period, year 1 is defined as
between July 1st, 2021 and June 30th, 2022. Year 2 is defined as the year thereafter.
The second period is analogous to the first, with the time ranges shifted backwards
by one year.

Figure 5: The analysis investigates the relationship between inspection rates and
change in crash rates in two time periods.
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2.2 SEGMENTATION OF CARRIERS

At this point we may begin our analysis into the relationship between inspec-
tion rates and change in crash rate, for all carriers inspected in year 1. However,
carriers vary in the sizes of their fleets and their safety risk levels, and these may
impact how each responds to inspections. To account for any difference in the
effect of inspections due to variance in sizes and safety risk levels, we segment
carriers according to the number of power units in their fleets and their assigned
Inspection Selection System (ISS) risk groups.

To do this we first aggregate all carriers which were inspected in year 1. Next,
we divide them into four size groups, size group 1 being the group consisting of the
smallest carriers (between 1 and 5 power units) and size group 4 being the group
consisting of the largest carriers (over 100 power units). This division method
is identical to that implemented in FMCSA’s Carrier Intervention Effectiveness
Model.

Carriers in each of the four size groups are then further divided according to
their safety risk levels. The ISS categorizes carriers into three risk groups: Pass,
Optional, Inspect. The "inspect" category is used to identify carriers with the
highest risk levels, and for ease of comprehension this analysis refers to the three
groups as Low, Medium, and High risk groups.

This process yields twelve final sub-groups of carriers segmented by size and
safety risk levels (see figure 6). This research performs twelve separate analyses
for each of these groups (shaded in red in figure 6), in addition to four analyses
of carrier groups divided by size only (groups shaded in blue). In total, sixteen
groups from each period were separately analyzed to determine if inspection rates
are negatively associated with change in crash rates, and if those associations are
statistically significant.

3 RESULTS

The analyses were performed using R and SQL. A separate R Markdown sum-
mary output which details the data processing and analysis steps accompanies this
document. The results of the analyses for each of the two periods are summarized
in the following two sections.
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Figure 6: Subdivision of carriers to account for possible variance in the effects of
inspection due to variance in carrier sizes and safety risk levels
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3.1 PERIOD 1 - INSPECTIONS BETWEEN 07/01/2021 AND 06/30/2022

Period one analysis discovers that higher inspection rates are generally nega-
tively associated with change in crash rate. Analyses of the four size groups (not
further divided by ISS risk groups) finds that higher inspection rates are nega-
tively associated with change in crash rates across all groups. The results are less
uniform when the groups are divided by their ISS risk groups. Group results in
which we discover a statistically significant negative association between higher
inspection rates and change in crash rates are shaded in green.

Figure 7: Statistical significance is defined as having a P-value of less than 0.05

In period 1, the negative association does not hold true when the smallest
carriers are further divided into their ISS risk groups. In the larger sized carriers,
the associations remain after their safety risk level subdivision. Larger carriers
generally see steeper slopes, which signifies greater change in crash rates with
greater increase in inspection rates. The results are illustrated below.
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Figure 8: Size Group 1 (1-5 PUs), All Carriers. Slope: -0.002243, P-value = 2e-16

Figure 9: Size Group 4 (> 100 PUs), All Carriers. Slope: -0.006626, P-value = 2e-16

Figure 10: Size Group 4 (> 100 PUs), High Risk. Slope: -0.007426, P-value = 2e-16
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3.2 PERIOD 2 - INSPECTIONS BETWEEN 07/01/2020 AND 06/30/2021

Period two analysis discovers similar results, with higher inspection rates
generally negatively associated with change in crash rate. Analyses of the four size
groups (not further divided by ISS risk groups) finds that higher inspection rates
are negatively associated with change in crash rates across all groups. Similar to
period 1 results, the indications are less uniform when the groups are divided by
their ISS risk groups.

Figure 11: Statistical significance is defined as having a P-value of less than 0.05

In period 2, the negative association does not hold true when the smallest
carriers are further divided into their ISS risk groups. This is also true in the
low risk groups of the larger carriers. Similar to period 1 results, however, larger
carriers generally see steeper slopes, which signifies greater change in crash rates
as inspection rates increase. The results are illustrated below.
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Figure 12: Size Group 1 (1-5 PUs), All Carriers. Slope: -0.000506, P-value = 2.06e-9

Figure 13: Size Group 4 (> 100 PUs), All Carriers. Slope: -0.003611, P-value = 9.19e-9

Figure 14: Size Group 4 (> 100 PUs), High Risk. Slope: -0.006124, P-value = 4.11e-4
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4 BENEFITS ESTIMATIONS

So far the preliminary results imply effectiveness, as indicated by the negative
association between inspection rates and change in crash rates. The following
sections will discuss ways by which we can interpret the resulting parameters
of the linear model and estimate, in more tangible terms, the degree to which
inspections impact road safety.

4.1 INTERPRETATION OF THE NEGATIVE SLOPE

To interpret the negative slope, we will use period one analysis on carriers in
size group 3 (21-100 PUs), all ISS risk group results as an example. Below are the
indications for the group.

The y-intercept of -0.0013 estimates that, on average, carriers with zero inspec-
tions see their crash rates decline by 0.0013 in year 2. The group’s slope of -0.0056
indicates that carriers with an inspection rate of 1.0, on average, experience lower
crash rate in year 2 by a factor of -0.0056 compared to carriers with an inspection
rate of 0.0.

Figure 15: Size Group 3 (21-100 PUs), All Risk. The Y-intercept estimates the change
in crash rate when inspection rate is equal to zero. Increasing the inspection rate
of a carrier by a factor of one, on average, reduces crash rates by a factor of 0.0056.
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To illustrate further, suppose we have three carriers each with 100 power units
and a 0.10 crash rate in year 1. Using the linear model above to predict crash rates
in year 2, a carrier with inspection rates of 0.0, 1.0, and 2.0 respectively, on average,
will see their safety performance unfold as follows.

Year 1 Year 1 f(IR) Year 2*

Carrier PUs CR IR Y-int + IR * Slope CR

1 100 0.10 0.0 - 0.0013 + (0.0) * -0.0056 0.0987

2 100 0.10 1.0 - 0.0013 + (1.0) * -0.0056 0.0931

3 100 0.10 2.0 - 0.0013 + (2.0) * -0.0056 0.0875

*𝑌𝑒𝑎𝑟 2𝐶𝑅 = 𝑌𝑒𝑎𝑟 1𝐶𝑅 + 𝑓 (𝐼𝑅)

Carrier 1, which received zero inspection, will see its crash rate decline by
0.0013. Carrier 2, which received 100 inspections (as indicated by an inspection
rate of 1.0) will see a negative change in crash rate by a factor equal to the y-
intercept plus the inspection rate times the slope. To estimate the degree to which
100 inspections reduce crashes, we can use this difference in change in crash rates
between carrier 1 and carrier 2.

Year 1 Year 2 Year 2

Carrier PUs IR CR Crashes Crashes Prevented

1 100 0.0 0.0987 9.87 0

2 100 1.0 0.0931 9.31 |9.31 - 9.87| = 0.56

3 100 2.0 0.0875 8.75 |8.75 - 9.87| = 1.02

Crashes prevented is the number of year 2 crashesminus the the year 2 crashes
of the carrier with zero inspections, which in this case serves as our control
group. This estimate indicates that the inspections performed on carriers 2 and 3
prevented a total of 1.58 crashes.
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4.2 TREATMENT AND CONTROL GROUPS

So far we estimated the benefits of roadside inspections by comparing carriers
with high and low inspection rates, where high is defined as carriers with inspec-
tion rates greater than zero. To estimate the number of crashes prevented, we
computed the difference in the change in crash rates between each carrier in the
treatment group (carriers 2 and 3) and the control group carrier (carrier 1), and
multiplied that difference by the number of power units carriers 2 and 3.

More generally, to estimate the number of crashes prevented, we took each
carrier in the treatment group, measure the difference between the change in crash
rate of the treatment carrier and themean change in crash rate of the control group
carriers, and multiply that difference by the number of power units the treatment
carrier has. We can simplify this procedure to the following equation.

𝐶𝑟𝑎𝑠ℎ𝑒𝑠 𝑃𝑟𝑒𝑣𝑒𝑛𝑡𝑒𝑑 =

𝑛∑︁
𝑖=1

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑃𝑈𝑖 ∗ 𝐼𝑛𝑠𝑝𝑒𝑐𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒𝑖 ∗ 𝑆𝑙𝑜𝑝𝑒 (1)

Where n is the number of carriers in the treatment group and i is a unique
index number for each carrier in the group. Note that this is only valid when the
treatment group consist of all carriers with inspection rate greater than zero.

Using this threshold, however, leads to highly imbalanced control and treat-
ment group sizes especially among large carriers where the vast majority have
an inspection rate of greater than zero and thus will fall under the treatment
group. For example, in carriers with greater than 100 power units, the Y-intercept
is determined solely by the projection of the line of best fit, not by actual carriers
with zero inspection rates. Therefore, the control group size is effectively zero.

4.3 BALANCING THE CONTROL AND TREATMENT GROUP SIZES

To increase balance in the sizes of the two groups, we can choose a new thresh-
old such as the mean of the inspection rate for a particular carrier group. That
is, the treatment group will consist of all carriers with inspection rates greater
than this mean rather than zero. By doing this, we effectively treat those carriers
with inspection rates below the mean as though they received no inspections. This
leads to a more conservative estimate and higher balance between control and
treatment group sizes.

We may then estimate how much the two groups differ in their change in
crash rates. To do this, we compute the mean change in crash rates for each
group, measure the difference, and determine if the difference is statistically
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significant. We can use this difference in means to estimate for the number of
crashes prevented using the following equation.

𝐶𝑟𝑎𝑠ℎ𝑒𝑠 𝑃𝑟𝑒𝑣𝑒𝑛𝑡𝑒𝑑 = (𝜇𝐴 − 𝜇𝐵) ∗
𝑛∑︁
𝑖=1

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑃𝑈𝑖 (2)

Where:

• 𝜇 is the mean change in crash rates for treatment (A) and control (B) groups

• n is the number of carriers in the treatment group

• i is a unique index number for each carrier in the treatment group

4.4 CRASHES PREVENTED ESTIMATIONS FOR PERIODS 1 AND 2

Applying the above formula to estimate crashes prevented from the analysis
of the two periods, we obtain the following results.

Size Group Period One Period Two

1-5 PUs 2,140.94 423.42

6-20 PUs 2,425.61 406.43

21-100 PUs 2,395.84 1,283.29

> 100 PUs 3,102.82 2,075.07

Total Crashes Prevented 10,065.22 4,188.21

4.5 INJURIES AVOIDED AND LIVES SAVED

To estimate for the number of injuries avoided and lives saved, an estimate
of howmany injuries and deaths occur per accident is needed. Various ways to
estimate these rates exist, and in this analysis the simple method of summing
the count of injuries in MCMIS and dividing it by the total count of crashes was
chosen. Similarly, to estimate a deaths per accident rate, we aggregate the count of
deaths in all crashes in MCMIS and divides it by the count of all crashes available
in the database.

𝐼𝑛 𝑗𝑢𝑟𝑖𝑒𝑠 𝑃𝑒𝑟 𝐴𝑐𝑐𝑖𝑑𝑒𝑛𝑡 = 𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑢𝑛𝑡 𝑜 𝑓 𝐼𝑛 𝑗𝑢𝑟𝑖𝑒𝑠 ÷ 𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑢𝑛𝑡 𝑜 𝑓 𝐶𝑟𝑎𝑠ℎ𝑒𝑠 (3)
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𝐼𝑛 𝑗𝑢𝑟𝑖𝑒𝑠 𝑃𝑒𝑟 𝐴𝑐𝑐𝑖𝑑𝑒𝑛𝑡 = 𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑢𝑛𝑡 𝑜 𝑓 𝐼𝑛 𝑗𝑢𝑟𝑖𝑒𝑠 ÷ 𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑢𝑛𝑡 𝑜 𝑓 𝐶𝑟𝑎𝑠ℎ𝑒𝑠 (4)

To estimate for number of injuries avoided and lives saved, we multiply the above
rates by the number of crashes prevented from each period.

Size Group Period One Period Two

Total Crashes Prevented 10,065 4,188

Total Injuries Avoided 4,308 1,792

Total Lives Saved 314 130

5 CONCLUSION

The preliminary analysis indicates that higher inspection rates are associated
with negative change in crash rates. Estimating safety benefits using the results
of the model requires selecting analysis parameters which ultimately impacts
the final estimate. The above methods of estimation were chosen primarily due
to their simplicity. More rigorous methods may be applied while balancing the
tradeoff between simplicity and complexity.
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